If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8+6a+a^2=0
a = 1; b = 6; c = +8;
Δ = b2-4ac
Δ = 62-4·1·8
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2}{2*1}=\frac{-8}{2} =-4 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2}{2*1}=\frac{-4}{2} =-2 $
| G=5g+4 | | x^2−19x=0 | | 2x+3^5=11 | | 6x-27=2x-7 | | 2.8x=9 | | 19x19−19x=0 | | x-29=5(2x+3)-8 | | -3(m+-3)=3 | | 3(2x+5)=-44+23 | | x-29=52x+3)-8 | | 9p^2+8=-9p | | a(3)=3.14^2 | | 4/1*1/4(4x+8)=4/1 | | 7^3x+5=7^1-x | | 5x-10x(10x)=0 | | 5x^2+12=9 | | (M+1)(m-1)=0 | | 1/4(4x-8)=x+2 | | 4((2x-1)=3(x+2) | | 5/6y-1/2=1/7 | | 64+6w=14w | | −56e−23e=−24− | | d1.2=6 | | 8.98x+71.84=143.68 | | 25+b²=36 | | 13u=9u+36 | | (5x+1)^(2)=36 | | 5^x=25 | | 18-(4b-17)=36 | | 20/60=x/240 | | (6x-21)=105 | | 8+4y=-12 |